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Abstract. Every simple module having character height at most one for a restricted Cartan-
type Lie algebra g can be realized as a quotient of a module obtained by starting with a simple
module S for the homogeneous component of degree zero in the natural grading of g, extending
the action trivially to positive components and inducing up to g. It is shown that if S is not
restricted, or if it is restricted and its maximal vector does not have exceptional weight, then
the induced module is already simple.

0. Introduction

For a restricted Cartan-type Lie algebra g, the restricted simple modules have been
determined in the sense that their isomorphism classes have been parametrized, concrete
realizations of them have been constructed, and their dimensions have been computed (see
[Sh, H1–4]). This determination is actually only modulo the same information for the
restricted simple modules for the homogeneous component of g of degree zero, which is
reductive, and some work has yet to be done for the hamiltonian and contact algebras when
the characteristic of the field is small. Now to each simple g-module, there corresponds a
linear functional on g called a character, the zero character being the one corresponding
to each restricted simple module. Therefore, the next task is to study the simple modules
having nonzero characters.

In 1941, Chang [C] worked with the smallest g, namely, the Witt algebra W (1,1) and
succeeded in determining, in the above sense, all the simple modules (arbitrary character).
Later, Strade [St] gave proofs of many of Chang’s results using more sophisticated methods.
Koreshkov [K] studied the next smallest Witt algebra, W (2,1), and proved many things
about the simple modules, but his results are not as explicit or complete as Chang’s.

Recently, the first author, working with the general Witt algebra W (n,1), determined
those simple modules having characters with height at most one [H5]. (The height of a
character is the smallest degree for which the character vanishes on the corresponding
filter component.) It is natural to consider these modules collectively because they are
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each a quotient of a module Zχ(S) obtained by starting with a simple module S for the
homogeneous component g0 of degree zero, extending the action trivially to the positive
components of g, and then inducing up (see 1.2 below). The trivial extension of the action
is the step that requires the character height to be at most one. The induced modules
Zχ(S) played an important role in the determination of the restricted simple modules, and
methods of [H5] are modeled after and partly generalize those for the restricted case.

The findings for the Witt algebra W (n,1) show that the induced modules Zχ(S) are
simple whenever S is not restricted, or when S is restricted and its maximal vector has
nonexceptional weight. The exceptional weights, defined carefully in Section 2, are the ones
that appeared in the study of the restricted case. They are n + 1 in number, as compared
to pn total weights, where p is the characteristic of the underlying field. Therefore, roughly
speaking, the induced modules Zχ(S) are usually simple. In this paper, we show that the
same statement about the simplicity of the induced modules Zχ(S) holds for any Cartan-
type Lie algebra, with the corresponding exceptional weights depending on the algebra,
but always small in number.

In [H5], the simple quotients of the induced modules Zχ(S) for the Witt algebra, in
the case of χ having height zero and S having maximal vector of exceptional weight, were
determined by first realizing the induced modules as the terms of a certain χ-version of
the usual de Rham sequence. This generalized Shen’s approach in [Sh] for the restricted
case. The second author has carried out in [Z] a similar determination for the special,
hamiltonian, and contact algebras (assuming, when the algebra is hamiltonian or contact,
that p > r in the notation of Section 3 below). This, together with the results of the
present paper and the earlier results mentioned above, completes the determination of the
simple modules having character height at most one for the restricted Cartan-type Lie
algebras (again, modulo classical information and the case of small p).

The authors are indebted to the referee for several useful suggestions.

1. Notation and Method

Let F be an algebraically closed field of characteristic p ≥ 5 and let g be a simple
restricted Cartan-type Lie algebra over F . Thus g belongs to one of four classes of algebras:
Witt, special, hamiltonian, contact. Each of these classes will be described in detail later
in the paper.

Let χ ∈ g∗ = HomF (g, F ). A (finite-dimensional, left) g-module M has character χ

provided
xp ·m− x[p] ·m = χ(x)pm

for all x ∈ g, m ∈ M , where xp denotes the pth power of x in the universal enveloping
algebra of g and x 7→ x[p] is the p-mapping defined on g. Not every module has a character,
but at least every simple module has one [SF, Theorem 2.5, p. 207].
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Generalizing the construction of the restricted enveloping algebra u(g) of g, one defines
the χ-reduced universal enveloping algebra of g, denoted u(g, χ), by forming the quotient of
the universal enveloping algebra of g by the ideal generated by {xp−x[p]−χ(x)p1F |x ∈ g}.
Note that u(g, 0) = u(g). Just like with u(g), the vector space u(g, χ) has a PBW-type
basis. The u(g, χ)-modules are precisely the g-modules having character χ.

Let a be a restricted subalgebra of g. Then χ restricts to an element of a∗ which we
continue to denote by χ. The algebra u(a, χ) identifies with a subalgebra of u(g, χ) in the
natural way. (See [SF, Section 5.3] for more details.)

The algebra g is finite dimensional over F and possesses a natural restricted grading:
g =

∑̇
igi with [gi, gj ] ⊆ gi+j , g

[p]
i ⊆ gpi. The subspace g0 of g is clearly a restricted

subalgebra. It has a triangular decomposition g0 = n−0 +̇h+̇n0 with h a maximal torus of
g0 and with n0 (respectively, n−0 ) a p-nilpotent ideal of h + n0 (respectively, h + n−0 ). For
each i ∈ Z, we put gi =

∑
j≥i gj and define n = n0 + g1, b = h + n.

The space h has a basis {h1, . . . , hd} the elements of which satisfy h
[p]
i = hi (1 ≤ i ≤ d).

Let M be a b-module and let λ ∈ F d. We set Mλ = {m ∈ M |hi · m = λim for all
1 ≤ i ≤ d}. An element of Mλ is a weight vector (of weight λ). A nonzero m ∈ Mλ is a
maximal vector (of weight λ) provided n ·m = 0.

Now suppose M has character χ and let 0 6= m ∈ Mλ. Then, since h
[p]
i = hi, we have

λp
i m − λim = hp

i · m − hi · m = χ(hi)pm for each 1 ≤ i ≤ d, implying λ ∈ Λχ := {λ ∈
F d |λp

i −λi = χ(hi)p for all 1 ≤ i ≤ d}. In particular, if M has a maximal vector of weight
λ, then necessarily λ ∈ Λχ. Note that if χ(h) = 0, then Λχ = Fd

p =: Λ, where Fp is the
prime subfield of F .

1.1 Lemma. Let χ ∈ g∗ with χ(n) = 0 and let M be a u(g, χ)-module. The following
conditions are equivalent:

(1) M is nonzero and is generated by each of its maximal vectors,
(2) M is simple.

Proof. Assume (1) holds and let M ′ be a nonzero submodule of M . Choose a simple
b-submodule S of M ′. Now n0 is a p-nilpotent ideal of h + n0 and the grading on g is
restricted, so n is a p-nilpotent ideal of b. Since S has character χ and χ(n) = 0, it follows
that for each x ∈ n, xpl · S = x[p]l · S = 0 for some l ∈ N. Therefore, n · S = 0 [SF,
Corollary 3.8, p. 19]. This implies that S is simple as h-module. Since h is abelian, S must
be one-dimensional [SF, Lemma 5.6, p. 31], so S = Fm for some nonzero m ∈ S. Clearly
m is a maximal vector. By assumption, m generates M , so that M ′ = M . Thus (2) holds.

Since a maximal vector is nonzero by definition, the other implication is obvious. ¤

Since g1 / g0, any g0-module becomes a g0-module via the canonical map g0 → g0/g1 ∼=
g0. In particular, a g0-module can in this way be viewed as a b-module; the notion of



4 RANDALL R. HOLMES AND CHAOWEN ZHANG

maximal vector applied to this situation coincides with the classical one for g0-modules
relative to the subalgebra h + n0.

For any u(g0, χ)-module M , the induced u(g, χ)-module Zχ(M) is defined by

Zχ(M) = u(g, χ)⊗u(g0,χ) M.

Following Strade [St], we define the height of χ by

htχ = min{i ≥ t |χ(gi) = 0},

where t = min{i | gi 6= 0}. If htχ ≤ 1 and M is a u(g0, χ)-module, then, since χ(g1) = 0,
M has character χ when viewed as a g0-module as in the preceding paragraph, so that
Zχ(M) is defined. These induced modules are useful for the study of simple modules for
the following reason.

1.2 Proposition. Let χ ∈ g∗ with htχ ≤ 1 and let M be a simple u(g, χ)-module. Then
M is a homomorphic image of Zχ(S) for some simple u(g0, χ)-module S.

Proof. M has a simple u(g0, χ)-submodule S. Now g1/g0, so arguing just as in the proof of
1.1, we deduce that g1 acts trivially on S. This implies that S is a (simple) u(g0, χ)-module
(see the discussion after 1.1). The inclusion map S → M is a u(g0, χ)-homomorphism, so
it induces a u(g, χ)-homomorphism Zχ(S) → M , which is surjective since M is simple. ¤

As pointed out in the introduction, the theory of restricted representations of g gave
rise to certain weights in Λ called exceptional weights ([Sh], [H1–4], [N]), the collection of
which we shall denote by Λe. The precise definitions of these weights are given in Sections
2 and 3.

The main result of the paper (4.3) is a corollary of the next theorem.

1.3 Theorem. Let χ ∈ g∗ with htχ ≤ 1, let M be a u(g0, χ)-module, and let v be a
maximal vector in Zχ(M) of weight λ. If either χ(n−0 ) 6= 0 or M has no maximal vector
of exceptional weight, then v = 1⊗m0 with m0 ∈ M a maximal vector of weight λ.

The proof of this theorem occupies the next two sections. The case with g the Witt
algebra was proved in [H5]; our proof where g is the special algebra requires just a few
additional arguments to recover the Witt algebra case, so we go ahead and include them
in order to present a somewhat unified approach.

2. The Witt and Special Algebras.

In this section, we prove 1.3 in the case g is either the Witt algebra or the special algebra.
We begin by describing these algebras, drawing most of the notation and standard results
from [SF]. (See also [BW].)
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Fix n ∈ N and let a, b ∈ Zn. We write a ≤ b if ai ≤ bi for all 1 ≤ i ≤ n and
we write a < b if a ≤ b but a 6= b. If a, b ≥ 0, define

(
a
b

)
=

∏
i

(
ai

bi

)
, where

(
ai

bi

)
is

the usual binomial coefficient with the convention that
(
ai

bi

)
= 0 unless bi ≤ ai. Set

A = A(n,1) = {a ∈ Zn | 0 ≤ a ≤ τ}, where τ := (p−1, . . . , p−1). The divided power algebra
A = A(n,1) is the associative F -algebra having F -basis {x(a) | a ∈ A} and multiplication
subject to the rule

x(a)x(b) =
(

a + b

a

)
x(a+b),

where x(c) := 0 if c /∈ A.
For each 1 ≤ i ≤ n, let Di denote the derivation of A uniquely determined by the

property Dix
(a) = x(a−εi), where εi is the n-tuple with jth entry δij (= Kronecker delta).

Then the Witt algebra W = W (n,1) is the restricted Lie algebra DerF A =
∑

i ADi, which
has F -basis {x(a)Di | a ∈ A, 1 ≤ i ≤ n}. The bracket product in W satisfies

[x(a)Di, x
(b)Dj ] =

(
a + b− εi

a

)
x(a+b−εi)Dj −

(
a + b− εj

b

)
x(a+b−εj)Di,

and the p-mapping is p-fold composition: D[p] := Dp (D ∈ W ). Putting xi = x(εi), we
have (xiDi)[p] = xiDi and (x(a)Di)[p] = 0 if a 6= εi (1 ≤ i ≤ n).

Given a ∈ Zn, set |a| =
∑

i ai. Defining Ak = 〈x(a) | a ∈ A, |a| = k〉 and Wk =∑
j Ak+1Dj we have W =

∑̇s

i=−1Wi, where s = n(p − 1) − 1. This is the restricted
grading on W referred to in Section 1. The restricted subalgebra W0 of W is isomorphic
to gl(A1) via D 7→ D|A1 (D ∈ W0). Composing this isomorphism with the isomorphism
gl(A1) → gln(F ) obtained by identifying xi ∈ A1 with the n-dimensional column vector
having jth entry δij , we obtain an isomorphism W0 → gln(F ) that sends xiDj to eij

(= n× n-matrix with 1 in the (i, j)-position and zeros elsewhere).
Now suppose n > 1. For 1 ≤ i, j ≤ n and x ∈ A, put

Dij(x) = Dj(x)Di −Di(x)Dj .

The special algebra is S = S(n,1) = 〈Dij(x) | 1 ≤ i, j ≤ n, x ∈ A〉, a restricted subalgebra
of W . The restricted grading on S of Section 1 is obtained by putting Si = Wi∩S. We have
S−1 = W−1 and the isomorphism W0 → gln(F ) described above induces an isomorphism
S0 → sln(F ).

In the next lemma and below, we use the notation Da :=
∏

i Dai
i (a ∈ Zn, a ≥ 0).

2.1 Lemma. Let χ ∈ W ∗. The following formulas hold in the algebra u(W,χ):

(1) (x(b)Di)Da =
∑

c≥0(−1)|c|
(
a
c

)
Da−c(x(b−c)Di),

(2) (Dij(x(b)))Da =
∑

c≥0(−1)|c|
(
a
c

)
Da−c(Dij(x(b−c)))
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(a, b ≥ 0, 1 ≤ i, j ≤ n).

Proof. Part (1) follows from [SF, Proposition 1.3(4), p. 9], and part (2) follows from (1)
by writing Dij(x(b)) = x(b−εj)Di − x(b−εi)Dj . ¤

For the remainder of this section, we assume g ∈ {W,S}. Put hi = xiDi − xi+1Di+1

for 1 ≤ i < n, as well as hn = xnDn. The triangular decomposition g0 = n−0 +̇h+̇n0 of
Section 1 is obtained by setting n−0 =

∑
i>j FxiDj , h =

∑d
i=1 Fhi, n0 =

∑
i<j FxiDj ,

where d = n− δgS .
For 0 ≤ i ≤ d, set

ωi = εi − δgW εn,

where εi denotes the d-tuple with jth entry δij (ε0 = 0). Then Λe = {ω0, ω1, . . . , ωd} is
the set of exceptional weights.

To begin the proof of 1.3, we assume its hypothesis: Let χ ∈ g∗ with htχ ≤ 1, let M be
a u(g0, χ)-module, let v ∈ Zχ(M) be a maximal vector of weight λ and assume that either
χ(n−0 ) 6= 0 or M has no maximal vector of exceptional weight.

Since g−1 has ordered basis {D1, . . . , Dn}, it follows from the PBW theorem that any
element of Zχ(M) can be written in the form

∑
a∈A Da ⊗ ma with the ma uniquely

determined elements of M . In particular, the maximal vector v can be written thus:
v =

∑
a∈A Da ⊗ma. This meaning of ma remains in force for the rest of the section.

For a ∈ A, define λ(a) ∈ F d by

λ(a)i =
{

λi + ai − ai+1, 1 ≤ i < n,

λn + an, i = n.

The next lemma says that ma is a weight vector of weight λ(a).

2.2 Lemma. If a ∈ A, then hi ·ma = λ(a)ima for 1 ≤ i ≤ d.

Proof. For 1 ≤ i < n, we have from 2.1(2)

hi · v = Di,i+1(x(εi+εi+1)) · v =
∑

a

Di,i+1(x(εi+εi+1))Da ⊗ma

=
∑

a

DaDi,i+1(x(εi+εi+1))⊗ma −
∑

a

aiD
a−εiDi,i+1(x(εi+1))⊗ma

−
∑

a

ai+1D
a−εi+1Di,i+1(x(εi))⊗ma.

The final three sums come from the terms in 2.1(2) corresponding to c = 0, εi, εi+1,
respectively, which are the only choices of c that can possibly make a nonzero contribution.
Substituting Di,i+1(x(εi+εi+1)) = hi, Di,i+1(x(εi+1)) = Di, Di,i+1(x(εi)) = −Di+1 and
collecting terms gives

hi · v =
∑

a

Da ⊗ (hi − ai + ai+1) ·ma.
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On the other hand, hi · v = λiv =
∑

a Da ⊗ λima. Combining this with the previous
equation and using uniqueness of expression we get the desired formula. If i = n (so that
g = W ), then a similar proof, except using 2.1(1), gives the formula. ¤

At present, ma is defined only for a ∈ A. It is convenient to extend the definition
as follows: If b ∈ Zn and b � τ , put mb = 0; if a ∈ A and ai = 0, put ma−εi

=
χ(Di)pma+(p−1)εi

. The motivation for these definitions appears in the proof of the next
lemma.

2.3 Lemma. Let 1 ≤ i, j ≤ n and let b ∈ A.

(1) If either 1 < t < p− 1, i 6= j, or 1 ≤ t < p− 1, i < j, then
(

bi + t− 1
t− 1

)
xiDj ·mb+(t−1)εi

=
(

bi + t

t

)
mb+tεi−εj .

(2) If i 6= j, then

(bj + 1)xiDj ·mb+εj = (bi + 1)[bj − bi/2 + xiDi − xjDj ] ·mb+εi .

(3) If g = W and 1 ≤ t < p− 1, then
(

bi + t

t

)
xiDi ·mb+tεi =

(
bi + t

t + 1

)
mb+tεi .

Proof. (1) Assuming either of the stated conditions, we have Dij(x((t+1)εi)) = −x(tεi)Dj ∈
n. Therefore, using that n · v = 0 and then 2.1(2), we obtain

(2.3.1)

0 = −Dij(x((t+1)εi)) · v = −
∑

a

(−1)t

(
ai

t

)
Da−tεiDij(x(εi))⊗ma

−
∑

a

(−1)t−1

(
ai

t− 1

)
Da−(t−1)εiDij(x(2εi))⊗ma

=
∑

a∈A

Da−tεi+εj ⊗ (−1)t

(
ai

t

)
ma

−
∑

a∈A

Da−(t−1)εi ⊗ (−1)t

(
ai

t− 1

)
xiDj ·ma.

The first two sums appearing above come from the terms c = tεi and c = (t− 1)εi, respec-
tively, in 2.1(2); all other choices of c make no contribution, either because x((t+1)εi−c) = 0
or because Dij(x((t+1)εi−c)) is in g1 which annihilates M .

Writing na = (−1)t
(
ai

t

)
ma, we have

(2.3.2)
∑

a∈A

Da−tεi+εj ⊗ na =
∑

a∈A
ai≥t

aj<p−1

Da−tεi+εj ⊗ na +
∑

a∈A
ai≥t

aj=p−1

Da−tεi+εj ⊗ na.
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Now Da−tεi+εj = χ(Dj)pDa−tεi−(p−1)εj whenever aj = p− 1, so

∑

a∈A
ai≥t

aj=p−1

Da−tεi+εj ⊗ na =
∑

b∈A
bi≤p−1−t

bj=0

Db ⊗ χ(Dj)pnb+tεi+(p−1)εj
=

∑

b∈A
bj=0

Db ⊗ nb+tεi−εj
,

where we have used the conventions established before the statement of the lemma. A more
elementary index shift in the first sum on the right of (2.3.2) expresses it as

∑
b∈A
bj 6=0

Db ⊗
nb+tεi−εj , so ∑

a∈A

Da−tεi+εj ⊗ na =
∑

b∈A

Db ⊗ nb+tεi−εj
.

After performing a similar index shift on the last sum in (2.3.1) and combining with the
first sum as rewritten above, (2.3.1) becomes

0 =
∑

b∈A

Db ⊗
[
(−1)t

(
bi + t

t

)
mb+tεi−εj − (−1)t

(
bi + t− 1

t− 1

)
xiDj ·mb+(t−1)εi

]
,

so the result follows.
(2) Assume i 6= j. Since Dij(x(2εi+εj)) = x(2εi)Di − x(εi+εj)Dj is in n, it annihilates v.

One argues as in the proof of (1) to obtain the result.
(3) Assume g = W and 1 ≤ t < p−1. Then x((t+1)εi)Di is in n and hence it annihilates v.

Again, one argues as in the proof of (1), except this time using 2.1(1) instead of 2.1(2). ¤

Now that the required formulas have been established, we are ready to carry out the
main portion of the proof of 1.3, which amounts to showing that in our expression v =∑

a Da⊗ma, each ma is zero unless a = 0. We will then have v = 1⊗m0 and it is an easy
matter to show m0 is a maximal vector. The proof proceeds in steps.

2.4 Lemma. Let a ∈ A. If there exist 1 ≤ i, j ≤ n with i 6= j such that aj 6= p − 1 and
either ai ≥ 3 or ai ≥ 2 and i < j, then ma = 0.

Proof. Let 1 ≤ i, j ≤ n with i 6= j and assume aj 6= p−1. Then 2.3(1) with b = a− tεi + εj

gives (
ai − 1
t− 1

)
xiDj ·ma−εi+εj =

(
ai

t

)
ma,

which is valid for t ∈ {1, 2} if i < j and ai ≥ 2, and valid for t ∈ {2, 3} if ai ≥ 3. In either
case, we obtain two equations which, when solved, yield ma = 0. ¤

2.5 Lemma. Let a ∈ A. If ai = p− 1 for some 1 ≤ i ≤ n, then ma = 0.

Proof. Assume ai = p− 1 for some 1 ≤ i ≤ n. Since p > 3, we have ai ≥ 3. Therefore, in
view of 2.4, we may assume a = τ = (p− 1, . . . , p− 1).
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Now 2.3(1) with t = 1, b = τ gives xiDj ·mτ = 0 whenever 1 ≤ i < j ≤ n. Next, for
each 1 ≤ i < n, 2.3(2) with j = i+1, b = τ − εi gives hi ·mτ = (xiDi−xi+1Di+1) ·mτ = 0.
And if g = W , then 2.3(3) with t = 1, b = τ − εn, i = n gives hn · mτ = −mτ . So if
mτ 6= 0, then mτ is a maximal vector of exceptional weight ω0.

Checking the hypotheses of 1.3 we see that we may assume χ(n−0 ) 6= 0, that is, χ(xiDj) 6=
0 for some 1 ≤ j < i ≤ n. Then 2.3(1) with t = 2, b = τ−εi gives xiDj ·mτ = 0. Therefore,
χ(xiDj)pmτ = (xiDj)p ·mτ = 0, which implies mτ = 0, as desired. ¤

2.6 Lemma. Let a ∈ A. If there exist 1 ≤ i < j < n such that ai 6= 0 and aj 6= 0, then
ma = 0.

Proof. Assume the hypothesis. By 2.5, we may assume ak 6= p − 1 for all 1 ≤ k ≤ n.
Putting b = a− εi + εj we have bj ≥ 2 and bn 6= p− 1, whence mb = 0 by 2.4. Therefore,
2.3(1) with t = 1 and this choice of b yields ma = 0. ¤

2.7 Lemma. Let a ∈ A. If ai ≥ 2 for some 1 ≤ i ≤ n, then ma = 0.

Proof. Suppose ai ≥ 2 for some 1 ≤ i ≤ n. We assume ma 6= 0 and shall derive a
contradiction. By 2.5, we have an 6= p− 1. If it were the case that i 6= n, then we could let
j = n in 2.4 to get ma = 0. Thus i = n and 2 ≤ an < p − 1. By replacing a if necessary,
we may assume that if c ∈ A and cn > an, then mc = 0. Let 1 ≤ k < n and suppose
ak 6= 0. Then 2.3(1) with i replaced by k, j = n, t = 1, b = a − εk + εn yields ma = 0
(since bn = an + 1 > an, implying mb = 0 by the above assumption). We conclude that
ak = 0 for all 1 ≤ k < n.

Suppose g = W . Then 2.3(3) with i = n, b = a− tεn yields (in view of 2.2)
(

an

t

)
λ(a)nma =

(
an

t + 1

)
ma

for t ∈ {1, 2}. Since ma 6= 0, the coefficients on both sides must be equal. We thus obtain
two equations (one for each t), which easily lead to an = −1 in F , implying an = p−1. This
contradicts an observation made earlier in the proof. Therefore, the lemma is established
for the case g = W .

Now assume g = S. In particular, n > 1. Therefore, we can let i = n, j = 1 in
2.4 to see that an = 2, that is, a = 2εn. Then 2.3(1) with i = n, t = 2, b = εj gives
(xnDj) ·mεj+εn = ma (1 ≤ j < n), from which it follows that

(2.7.1) mεj+εn 6= 0 (1 ≤ j ≤ n)

(since ma 6= 0).
By letting t = 1, b = εk + εl in 2.3(1) we find that

(2.7.2) xiDj ·mεk+εl
=





2δilmεi+εl
, j = k,

2δikmεi+εk
, j = l,

0, j /∈ {k, l},
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for all 1 ≤ i, j, k, l ≤ n with i < j. (For this, we have used the fact that if c ∈ A and cj = 0
for some 1 ≤ j ≤ n, then mc−εj

= χ(Dj)pmc+(p−1)εj
, which is zero by 2.5.) In particular,

we get
xiDj ·mε1+εn = 0 (1 ≤ i < j ≤ n)

where we have used that mεi+ε1 = 0 if 1 < i < n (2.6) and m2ε1 = 0 (2.4). Therefore,
mε1+εn

is a maximal vector (using (2.7.1)).
Let 1 ≤ i < n. By 2.3(2) with j = i + 1, b = εn, and then by (2.7.2), we have

hi ·mεi+εn =
{

xiDi+1 ·mεi+1+εn
, i ≤ n− 2

2xn−1Dn ·m2εn −mεn−1+εn , i = n− 1

}
= mεi+εn .

Thus, λ(εi + εn)i = 1 (2.2 and (2.7.1)). Hence,

λ(ε1 + εn)i = λi + δi1 − δi,n−1 = λ(εi + εn)i + δi1 − 1 = δi1.

It follows that mε1+εn is a maximal vector of exceptional weight λ(ε1 + εn) = ω1.
Checking the hypotheses of 1.3, we see that it must be the case that χ(n−0 ) 6= 0, so

that χ(xiDj) 6= 0 for some 1 ≤ j < i ≤ n. Now 2.3(1) with t = 2, b = εn gives
xiDj ·mεi+εn = 0. Arguing as in the proof of 2.5, we obtain mεi+εn = 0 which is in conflict
with (2.7.1). Because of this contradiction, we deduce that in fact ma = 0, as desired. ¤

2.8. Completion of proof of 1.3 when g ∈ {W,S}.
Let a ∈ A. If an = 1 and ai 6= 0 for some 1 ≤ i < n, then 2.3(1) with j = n, t = 1,

b = a − εi + εn gives ma = xiDn ·mb = 0, the last equality from 2.7 since bn = 2. From
this observation, together with 2.6 and 2.7, we conclude that

v = 1⊗m0 +
n∑

i=1

Di ⊗mεi .

Assume mεl
6= 0 for some 1 ≤ l ≤ n and further assume this l is the least such index.

From 2.3(1) with t = 1, b = εk, we get

(2.8.1) xiDj ·mεk
= δjkmεi (1 ≤ k ≤ n)

for 1 ≤ i < j ≤ n (using also 2.5 as in the comment after (2.7.2)). It follows that mεl
is a

maximal vector.
Next, 2.3(2) with b = 0 gives xlDi ·mεi = (xlDl − xiDi) ·mεl

for all 1 ≤ i ≤ n with
i 6= l. This, together with (2.8.1), implies

(xlDl − xiDi) ·mεl
=

{
mεl

, i > l,

0, i ≤ l.
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Now for 1 ≤ i < n, we have hi = xiDi − xi+1Di+1 = (xlDl − xi+1Di+1)− (xlDl − xiDi).
Applying this element to mεl

and using the previous formula, we find that hi ·mεl
= δilmεl

,
whence λ(εl)i = δil for 1 ≤ i < n (using 2.2).

Suppose for the moment that g = W . Then 2.3(3) with t = 1, b = 0, i = n yields
hn ·mεn = 0, whence λ(εn)n = 0. Thus, for j < n we have λ(εj)n = λn = λ(εn)n−1 = −1,
implying

λ(εl)n =
{ −1, if l < n,

0, if l = n.

Therefore, returning to the case of arbitrary g ∈ {W,S} we see that mεl
is a maximal

vector of exceptional weight λ(εl) = ωl.
Checking the hypotheses of 1.3, we see that it must be the case that χ(n−0 ) 6= 0, so

that χ(xiDj) 6= 0 for some 1 ≤ j < i ≤ n. By 2.3(1) with t = 2, b = 0, we have (using
2.5) xiDj · mεi = 0, which implies mεi = 0 (see last paragraph of proof of 2.5). Now if
l < k ≤ n, then (2.8.1) gives xlDk ·mεk

= mεl
6= 0, whence mεk

6= 0. Therefore, we have
i < l. Next,

xiDj ·mεl
= [xiDl, xlDj ] ·mεl

= xiDl · xlDj ·mεl
− xlDj · xiDl ·mεl

.

Since xlDj · mεl
= 0 by 2.3(1) with i = l, t = 2, b = 0, and also xiDl · mεl

= mεi = 0
(2.8.1), we get xiDj ·mεl

= 0, implying mεl
= 0. This is contrary to our choice of l, so we

conclude that mεk
= 0 for all 1 ≤ k ≤ n. In other words, v = 1⊗m0.

By 2.2, m0 is a weight vector of weight λ(0) = λ. Since v is a maximal vector, v 6= 0,
so m0 6= 0 as well. Finally, 2.3(1) with t = 1, b = 0 gives xiDj · m0 = 0 whenever
1 ≤ i < j ≤ n. Thus, m0 is a maximal vector of weight λ. ¤

3. The Contact and Hamiltonian Algebras.

In this section, we complete the proof of 1.3 by considering the cases of the contact and
hamiltonian algebras. We begin by describing these algebras. (Again, see [SF] or [BW] for
more details.)

Let r ∈ N and set n = 2r + 1. Define

σ(i) =
{

1, 0 ≤ i ≤ r,

−1, r < i ≤ n.

For 0 < i < n, put i′ = i + σ(i)r, and also put 0′ = n and n′ = 0.
Let DK : A(n,1) → W (n,1) denote the F -linear mapping given by DK(f) =

∑n
i=1 fiDi,

where

fi = xiDn(f) + σ(i′)Di′(f) (1 ≤ i ≤ 2r),

fn = 2f −
2r∑

i=1

σ(i)xifi′ .
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Then DK is injective and its image is a restricted subalgebra of W (n,1). The contact
algebra is

K = K(n,1) =
{

A(n,1), n + 3 6≡ 0 mod p,∑
a<τ Fx(a), n + 3 ≡ 0 mod p

(τ = (p−1, . . . , p−1)) with the Lie bracket product given by 〈f, g〉 = D−1
K ([DK(f), DK(g)])

(f, g ∈ K) and with p-mapping given by f [p] = D−1
K ([DK(f)]p) (f ∈ K). We will require

only some special cases of the bracket product, which we gather together in the next
lemma.

It is convenient to define ε0 = 0 ∈ A, so that x0 = x(ε0) = x(0) ∈ K. Put hi = x(εi+εi′ )

for 1 ≤ i ≤ n. For a ∈ A(n,1), put ‖a‖ = |a|+ an − 2 (where |a| = ∑n
i=1 ai).

3.1 Lemma [SF, Proposition 5.3 and p. 173]. Let a ∈ A(n,1).

(1) 〈xi, x
(a)〉 = σ(i)x(a−εi′ ) + [(1− δ0i)ai + 1]x(a+εi−εn) for 0 ≤ i < n.

(2) 〈hi, x
(a)〉 = σ(i)(ai′ − ai)x(a) for 1 ≤ i < n.

(3) 〈hn, x(a)〉 = ‖a‖x(a).
(4) For 1 ≤ i, j, k, l < n, we have

〈x(εi+εj), x(εk+εl)〉 = 2−δij−δkl
[
σ(j)

(
δl′j2δikx(εi+εk) + δk′j2δilx(εi+εl)

)

+ σ(i)
(
δi′l2δjkx(εj+εk) + δi′k2δjlx(εj+εl)

)]
.

We have K =
∑̇

i≥−2Ki, where Ki := 〈x(a) | ‖a‖ = i〉∩K. This is the restricted grading
on K referred to in Section 1. The F -space K−2 + K−1 has basis {xi | 0 ≤ i < n}, and an
isomorphism from the restricted subalgebra K0 of K to sp2r(F )⊕ F is obtained via

x(εi+εj) 7→ 2−δij
(
σ(i)eji′ + σ(j)eij′

) ∈ sp2r(F ) (1 ≤ i, j ≤ 2r),

x(εn) 7→ 1 ∈ F.

We view Z2r as a subset of Zn by identifying (a1, . . . , a2r) with (a1, . . . , a2r, 0) and
accordingly we regard A(2r,1) as a subspace of A(n,1). It is easily checked that L :=
〈x(a) | a ∈ A(2r,1), a < τ ∈ A(2r,1)〉 is a restricted subalgebra of K, and that J := Fx(0)

is a restricted ideal of L. The hamiltonian algebra is H = H(2r,1) = L/J . We shall write
x(a) +J simply as x(a), so that H = 〈x(a) | a ∈ A(2r,1), 0 < a < τ〉. The restricted grading
on H of Section 1 is the one induced by that on K, so Hi = 〈x(a) | ‖a‖ = i〉 ∩ H. We
have H =

∑̇
i≥−1Hi. The F -space H−1 has basis {xi | 1 ≤ i ≤ 2r}, and the isomorphism

K0 → sp2r(F )⊕ F described above induces an isomorphism H0 → sp2r(F ).
For the remainder of this section, we assume g ∈ {K,H}. We set d = n− δgH and

Â =
{

A(d,1), if g = K and n + 3 6≡ 0 mod p,

A(d,1)\{τ}, otherwise,
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so that g = 〈x(a) | a ∈ Â〉.
In the next lemma and below, we use the notation T a := T a1

1 T a2
2 · · ·T an

n (a ∈ Zn, a ≥ 0),
where

Ti =
{

xi, 1 ≤ i < n,

x(0), i = n.

Also, for e ∈ A(2r,1), we put e1 := (e1, . . . , er, 0, . . . , 0) ∈ A(2r,1), e′ = (e1′ , . . . , e(2r)′) ∈
A(2r,1), and e! =

∏
i(ei!). Finally, if P is a statement, we use the symbol δP to represent

1 if the statement is true and 0 if the statement is false.

3.2 Lemma. Let χ ∈ g∗. The following formulas hold in the algebra u(g, χ):

(1) For b ∈ Â and 0 ≤ a ∈ Zn,

x(b)T a =
∑

e,f,k

(−1)|e
1+f |+k2k

(
an

k

)(
a

e + f

)(
e + f

e

)(
b− (e1)′ + f

f

)
f !

· T a−e−f−kεnx(b−e′+f−(|f |+k)εn),

where the sum is over all 0 ≤ e, f ∈ Z2r and 0 ≤ k ∈ Z with e + f + kεn ≤ a and
b− e′ + f − (|f |+ k)εn ∈ Â.

(2) For 0 ≤ a ∈ Zn and 1 ≤ i < n,

T axi = T a+εi − δi≤rai′T
a−εi′+εn .

Proof. (1) We proceed by induction on |a|. The case |a| = 0 is trivial, so assume |a| > 0
and let 1 ≤ i ≤ n be the greatest index for which ai 6= 0.

First suppose i < n. Using the induction hypothesis and then 3.1(1) we get

x(b)T a = x(b)T a−εiTi

=
∑

e,f

(−1)|e
1+f |

(
a− εi

e + f

)(
e + f

e

)(
b− (e1)′ + f

f

)
f !T a−e−fx(b−e′+f−|f |εn)

− σ(i)
∑

e,f

(−1)|e
1+f |

(
a− εi

e + f

)(
e + f

e

)(
b− (e1)′ + f

f

)
f !T a−εi−e−fx(b−e′+f−|f |en−εi′ )

−
∑

e,f

(−1)|e
1+f |

(
a− εi

e + f

)(
e + f

e

)(
b− (e1)′ + f

f

)
f !(bi − (e′)i + fi + 1)

· T a−εi−e−fx(b−e′+f−|f |εn+εi−εn),

where the sums are over all 0 ≤ e, f ∈ Z2r with e+f ≤ a−εi and b(e, f) := b−e′+f−|f |εn ∈
Â (noting that our assumption on i forces an = 0 and hence k = 0 in each sum). Replacing
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e by e− εi in the second sum and replacing f by f − εi in the third sum, we then get

x(b)T a =
∑

e+f≤a−εi

b(e,f)∈Â

(
a− εi

e + f

)(
e + f

e

)(
b− (e1)′ + f

f

)
f !y(e, f)

+
∑

e≥εi
e+f≤a

b(e,f)∈Â−εi′

(
a− εi

e− εi + f

)(
e− εi + f

e− εi

)(
b− ((e− εi)1)′ + f

f

)
f !y(e, f)

+
∑

f≥εi
e+f≤a

b(e,f)∈Â+εi−εn

(
a− εi

e + f − εi

)(
e + f − εi

e

)(
b− (e1)′ + f − εi

f − εi

)

· (f − εi)!(bi − ei′ + fi)y(e, f),

where y(e, f) := (−1)|e
1+f |T a−e−fx(b−e′+f−|f |εn) and where we have used the fact that

(−1)|(e−εi)
1| = −σ(i)(−1)|e

1|.
Let 0 ≤ e, f ∈ Z2r with e + f ≤ a. If i ≤ r, then 0 ≤ fi′ ≤ ai′ = 0 (by the definition

of i), and if i > r, then (e − εi)1 = e1. Therefore, either bi′ − ei + fi′ < 0 (in which case
y(e, f) = 0), or

(
b− ((e− εi)1)′ + f

f

)
f ! =

(
b− (e1)′ + f

f

)
f ! =: d(e, f).

Now assume f ≥ εi. If i ≤ r, then 0 ≤ ei′ ≤ ai′ = 0. Hence, ei′ = ((e1)′)i in general,
implying (

b− (e1)′ + f − εi

f − εi

)
(f − εi)!(bi − ei′ + fi) = d(e, f)

as well.
Therefore, observing that we can let e and f range with e, f ≥ 0, e + f ≤ a, and

b(e, f) ∈ Â in all three sums (the additional terms contributing nothing), we see that the
sums combine to yield

x(b)T a =
∑

e,f

c(e, f)d(e, f)y(e, f),

where

c(e, f) =
[(

a− εi

e + f

)(
e + f

e

)
+

(
a− εi

e− εi + f

)(
e− εi + f

e− εi

)
+

(
a− εi

e + f − εi

)(
e + f − εi

e

)]
.

Using a standard binomial coefficient identity twice, we find that c(e, f) =
(

a
e+f

)(
e+f

e

)
,

which completes the proof of the case i < n.
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It remains to check the case i = n. This proof uses the formula 〈x(0), x(b)〉 = 2x(b−εn),
which is 3.1(1) with i = 0. The remainder of the proof is routine and is therefore omitted.

(2) Let 1 ≤ i < n. By 3.1(1), we have TjTi = TiTj for j 6= i′, while Ti′Ti = TiTi′−σ(i)Tn.
In particular, the formula is clearly valid if i > r. Suppose now 1 ≤ i ≤ r. Then for
0 ≤ a ∈ Zn, we have

T axi = T aTi =


∏

j 6=i′
T

aj

j


 (T ai′

i′ Ti)

=


∏

j 6=i′
T

aj

j


 (TiT

ai′
i′ − ai′T

ai′−1
i′ Tn) = T a+εi − ai′T

a−εi′+εn ,

the third equality from the first part of this paragraph and an easy induction on ai′ . ¤

The triangular decomposition g0 = n−0 +̇h+̇n0 of Section 1 is obtained by setting n−0 =
〈x(εi+εj) | (i, j) ∈ I−〉, h = 〈hi | 1 ≤ i ≤ d〉, n0 = 〈x(εi+εj) | (i, j) ∈ I〉, where I− =
{(i, j) | 1 ≤ i′ < j ≤ r or r < i ≤ j < n} and I = {(i, j) | 1 ≤ i ≤ j ≤ r or r < i′ < j < n}.

For 0 ≤ k ≤ d, set

ωk = −
k̄∑

i=1

(εi + εi′) + δgK

[
σ(k)(r + 1− k̄)− r − 1

]
εn ∈ Λ,

where

k̄ =
{

k, 0 ≤ k ≤ r,

k′, r < k ≤ n.

Then Λe = {ω0, ω1, . . . , ωd} is the set of exceptional weights.
We point out that in this paper weights are d-tuples, whereas in [H1–4], they were

(r + δgK)-tuples. Since hi′ = x(εi′+εi) = hi (1 ≤ i ≤ r), a d-tuple λ ∈ F d is a weight of
a nonzero vector only if λi′ = λi for each 1 ≤ i ≤ r. Therefore, there is redundancy here
and r entries of λ can be dropped to give a weight in the earlier sense. We use the d-tuples
because they provide a certain flexibility useful for simplifying arguments. If g = H, then
ωk′ = ωk for 1 ≤ k ≤ r, implying Λe = {ω0, ω1, . . . , ωr} (cf. [H4]). If g = K, then ωk

corresponds to ω+
k for 0 ≤ k ≤ r and to ω−k′ for r < k ≤ n, where ω±k are as in [H3].

To begin the proof of 1.3, we assume its hypothesis: Let χ ∈ g∗ with htχ ≤ 1, let M

be a u(g0, χ)-module, let v ∈ Zχ(M) be a maximal vector of weight λ ∈ Λχ and assume
that either χ(n−0 ) 6= 0 or M has no maximal vector of exceptional weight.

Putting A = A(d,1) we have, just as in Section 2, that v =
∑

a∈A T a ⊗ma with the
ma uniquely determined elements of M .

For a ∈ A, define λ(a) ∈ F d by setting, for 1 ≤ i ≤ d,

λ(a)i =
{

λi + σ(i)(ai − ai′), if 1 ≤ i < n,

λn + |a|+ an, if i = n.
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3.3 Lemma. If a ∈ A, then hi ·ma = λ(a)ima for 1 ≤ i ≤ d.

Proof. Let 1 ≤ i ≤ d. First assume i ≤ r. Using 3.2(1), we get

hi · v = x(εi+εi′ ) · v =
∑

a

x(εi+εi′ )T a ⊗ma

=
∑

a

T ax(εi+εi′ ) ⊗ma −
∑

a

aiT
a−εixi ⊗ma

+
∑

a

ai′T
a−εi′xi′ ⊗ma −

∑
a

aiai′T
a−εi−εi′x(0) ⊗ma.

The final four sums come from the terms in 3.2(1) corresponding to f = 0, k = 0, and
e = 0, εi, εi′ , εi + εi′ , respectively, which are the only choices of (e, f, k) that satisfy the
constraints. Applying 3.2(2) to the second and third sums and then collecting terms gives

hi · v =
∑

a

T a ⊗ (hi − ai + ai′) ·ma.

The desired formula now follows just as in the proof of 2.2. We then obviously have the
formula for r < i < n as well. If i = n (so that g = K), then a similar proof gives the
formula. (Here, we need to use 3.2(1) to rewrite x(εn)T a and the only indices we need to
include are (e, f, k) = (0, 0, 0), (0, 0, 1), (0, εi, 0), (εi′ , εi, 0), for 1 ≤ i < n.) ¤

Just as in the discussion before 2.3, it is convenient to extend the definition of ma: If
b ∈ Zn, and b � τ ∈ A, put mb = 0; if a ∈ A and ai = 0, put ma−εi = χ(Ti)pma+(p−1)εi

.
Observe that if g = H, and a ∈ Zd ⊂ Zn, then ma−εn = 0 since Tn = x(0) = 0. In
particular, the final term in each of the formulas 3.4(1,2,4,5,6) below vanishes if g = H.

3.4 Lemma. Let 1 ≤ i, j < n and let b ∈ A.

(1) If 3 ≤ l < p, or if 2 ≤ l < p and i ≤ r, then

0 =
(

bi′ + l − 2
l − 2

)
x(2εi) ·mb+(l−2)εi′ + σ(i)

(
bi′ + l − 1

l − 1

)
mb+(l−1)εi′−εi

+
(

bi′ + l

l

)
(1− lδi≤r)mb+lεi′−εn .

(2) If 1 ≤ i, j ≤ r, then

0 = 2δij x(εi+εj) ·mb + (bi′ + 1)mb−εj+εi′

+ (bj′ + 1)mb−εi+εj′ − (bi′ + δij + 1)(bj′ + 1)mb+εi′+εj′−εn .

(3) If r < i′ < j < n, then

0 = x(εi+εj) ·mb − (bj′ + 1)mb−εi+εj′ + (bi′ + 1)mb+εi′−εj .
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(4) If j /∈ {i, i′}, then

0 = σ(i)(bi′ + 1)x(εi+εj) ·mb+εi′ + σ(j)(bj′ + 1)x(2εi) ·mb+εj′

+
(

bi′ + 2
2

)
mb+2εi′−εj + σ(i)σ(j)(bi′ + 1)(bj′ + 1)mb+εi′+εj′−εi

− (δj>r + 2σ(j)δi≤r)
(

bi′ + 2
2

)
(bj′ + 1)mb+2εi′+εj′−εn

.

(5) We have

0 =
[(

bi′ + 1
2

)
− bi(bi′ + 1) + σ(i)(bi′ + 1)λ(b + εi′)i

]
mb+εi′

− σ(i)(bi + 1)x(2εi) ·mb+εi
+ δi≤r(bi + 1)

(
bi′ + 2

2

)
mb+εi+2εi′−εn .

(6) If 1 ≤ i ≤ r and j /∈ {i, i′}, then

0 = (bi + 1)(bi′ + 1)mb+εi+εi′−εj − (bi′ + 1)x(εi′+εj) ·mb+εi′

+ (bi + 1)x(εi+εj) ·mb+εi − σ(j)(bj′ + 1)[λ(b + εj′)i − bi + bi′ ]mb+εj′

− δj≤r(bi + 1)(bi′ + 1)bj′mb+εi+εi′+εj′−εn .

(7) If g = K, then

0 = (bi′ + 1)
[
bn − bi − λ(b + εi′)i + σ(i)λ(b + εi′)n − σ(i)|b|]mb+εi′

−
∑

1≤j<n
j 6=i′

(1 + δij)(bj + 1)x(εi+εj) ·mb+εj − 2(bn + 1)mb−εi+εn

−
∑

1≤j≤r
j /∈{i,i′}

(bj′ + 1)(bj + 1)mb+εj′+εj−εi

+ δi≤r

r∑

j=1

(bi′ + δji′ + δji + 1)(bj + δji′ + 1)(bj′ + 1)mb+εi+εj+εj′−εn .

Proof. (1) Assuming either of the stated conditions, we have x(lεi) ∈ n. Therefore, using
that n · v = 0 and then 3.2(1), we obtain

0 = x(lεi) · v =
∑

a

σ(i)l−2

(
ai′

l − 2

)
T a−(l−2)εi′x(2εi) ⊗ma

+
∑

a

σ(i)l−1

(
ai′

l − 1

)
T a−(l−1)εi′x(εi) ⊗ma

+
∑

a

σ(i)l

(
ai′

l

)
T a−lεi′x(0) ⊗ma.
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The sums come from the terms in 3.2(1) corresponding to f = 0, k = 0, and e = (l −
2)εi′ , (l − 1)εi′ , lεi′ , respectively; all other choices of (e, f, k) make no contribution, either
because the exponent of x(lεi−e′+f−(|f |+k)εn) is not in Â, or because this element is in g1

which annihilates M . Using 3.2(2) on the second sum and combining, we obtain

0 =
∑

a

T a−(l−2)εi′ ⊗
(

ai′

l − 2

)
x(2εi) ·ma + σ(i)

∑
a

T a−(l−1)εi′+εi ⊗
(

ai′

l − 1

)
ma

+
∑

a

T a−lεi′+εn ⊗ [1− lδi≤r]
(

ai′

l

)
ma.

Now a shift of indices expresses each sum in the form
∑

b T b ⊗ nb with nb ∈ M , and the
conventions given before the statement of this lemma allow the sum to be taken over all
b ∈ A (see proof of 2.3). Combining the sums and using uniqueness of expression, we get
the desired formula.

The remaining formulas are proved in a similar fashion. We shall just indicate how to
begin the proofs and leave the details to the interested reader.

(2 and 3) Use that x(εi+εj) · v = 0 when (i, j) ∈ I since v is a maximal vector.
(4,5, and 6) Use that x(2εi+εj) · v = 0, x(2εi+εi′ ) · v = 0, x(εi+εi′+εj) · v = 0, respectively,

since g1 ·M = 0.
(7) Assuming g = K, we have x(εi+εn) ∈ g1, so x(εi+εn) · v = 0. ¤

We are now ready to carry out the main portion of the proof of 1.3, which amounts to
showing that in our expression v =

∑
a T a⊗ma, each ma is zero unless a = 0. We proceed

in steps.

3.5 Lemma. Let a ∈ A and let 1 ≤ i < n. If ai 6= p− 1 and ai′ ≥ 4, then ma = 0.

Proof. Assume the hypothesis. First suppose p > 5. Our assumptions imply b := a− (l −
1)εi′ +εi ∈ A for l ∈ {3, 4, 5}. Therefore, 3.4(1) applies to yield a system of three equations
(one for each l),

(3.5.1)
0 =

(
ai′ − 1
l − 2

)
x(2εi) ·ma−εi′+εi + σ(i)

(
ai′

l − 1

)
ma

+
(

ai′ + 1
l

)
(1− lδi≤r)ma+εi′+εi−εn

which one routinely solves to find that ma = 0.
Now suppose p = 5. Then 4 ≤ ai′ ≤ p−1 forces ai′ = 4. This implies ma+εi+εi′−εn = 0,

so the first two equations in the above system, which are still valid for this p, involve only
ma−εi′+εi and ma. The resulting system again yields ma = 0. ¤
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3.6 Lemma. Let a ∈ A and let 1 ≤ i < n. If ai′ ≥ 3 and either ai′ 6= p− 1 or ai 6= p− 1,
then ma = 0.

Proof. Assume the hypothesis. If ai = p − 1, then ai′ 6= p − 1 and also ai ≥ 4 (since
p ≥ 5), so 3.5 applies to give ma = 0. Now assume ai 6= p − 1. By 3.5, we may assume
ai′ = 3. Suppose ai = p− 2. Then ai ≥ 3 (again, since p ≥ 5), implying ma−εi′+εi = 0 by
3.5. Under our assumptions, the first two equations in (3.5.1) remain valid and comprise
a system in ma and ma+εi+εi′−εn

. This system yields ma = 0. Finally, suppose ai 6= p−2.
Then 3.5 implies ma+εi+εi′−εn = 0, so the first two equations in (3.5.1) comprise a system
in ma and ma−εi′+εi , which again yields ma = 0. ¤

3.7 Lemma. If a ∈ A and ai = p− 1 for some 1 ≤ i < n, then ma = 0.

Proof. We prove the following claim: If a ∈ A and ai = p − 1 = ai′ , aj 6= p − 1 for some
1 ≤ i ≤ r, 1 ≤ j < n, with j /∈ {i, i′}, then ma = 0.

Assume the hypothesis and let b = a− εi− εi′ + εj in 3.4(6). The first term on the right
becomes ma, by 3.5 and 3.6 the next three terms are zero, and the last term is a multiple
of mc where c = a + εj + εj′ − εn if an 6= 0 and c = a + εj + εj′ + (p− 1)εn if an = 0.

We prove our claim by reverse induction on aj . If aj = p− 2, then ma = 0 by 3.6. Now
suppose aj < p−2. If aj′ = p−1, then ma = 0 by 3.5, so suppose aj′ < p−1. Then c ∈ A,
ci = p − 1 = ci′ , cj 6= p − 1, and cj = aj + 1 > aj . Therefore, mc = 0 by the induction
hypothesis. Hence ma = 0 and the claim is established.

Now suppose there exists a ∈ A such that ai = p− 1 for some 1 ≤ i < n, and ma 6= 0.
We shall derive a contradiction. By 3.5, ai′ = p−1. Then the first part of the proof applies
to give ai = p− 1 for all 1 ≤ i < n.

Next, we argue that ma is a maximal vector with the exceptional weight ωn.
Letting b = a in both 3.4(2) and 3.4(3) we get x(εi+εj) ·ma = 0 for all (i, j) ∈ I (since

each of the other terms is a multiple of mc with c � τ), so ma is a maximal vector (recalling
that g1 ·M = 0).

Letting b = a− εi′ (1 ≤ i < n) in 3.4(5), we see that the last two terms are zero, which
forces the coefficient of mb+εi′ (= ma) to be zero. Thus λ(a)i = 0 for each 0 ≤ i < n. And
if g = K, then putting b = a− εi′ (any 1 ≤ i ≤ r) in 3.4(7), we see that the terms past the
first are zero (noting that the ith component of b− εi + εn is p− 2, implying mb−εi+εn = 0
by 3.6), so the coefficient of mb+εi′ (= ma) is zero, whence λ(a)n = −2r−2. We conclude,
using 3.3, that ma is a maximal vector of exceptional weight ωn.

Checking the hypotheses of the theorem (1.3), we see that it must be the case that
χ(n−0 ) 6= 0. Hence, χ(x(εi+εj)) 6= 0 for some (i, j) ∈ I−. Now putting b = a − εi′

in 3.4(4), or in 3.4(1) with l = 3 in the case i = j, we get x(εi+εj) · ma = 0. Then
χ(x(εi+εj))pma = (x(εi+εj))p ·ma = 0, which is a contradiction since χ(x(εi+εj)) 6= 0 and
ma 6= 0. This contradiction establishes the lemma. ¤
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3.8 Lemma. Let a ∈ A. If ai ≥ 3 for some 1 ≤ i < n or ai′ ≥ 2 for some 1 ≤ i ≤ r, then
ma = 0.

Proof. Assume ai ≥ 3 for some 1 ≤ i < n. If ai′ = p − 1, then 3.7 says ma = 0, while if
ai′ 6= p−1, then 3.6 says ma = 0. It remains to consider the case ai′ = 2 for some 1 ≤ i ≤ r,
which we now assume. By 3.7, we may assume ai 6= p− 1. Since ma+εi+εi′−εn

= 0 by the
first part of this proof, we obtain, by letting b = a− (l− 1)εi′ + εi and l ∈ {2, 3} in 3.4(1),
a system in ma and ma−εi′+εi

(see (3.5.1)) that implies ma = 0. ¤

3.9 Lemma. Let a ∈ A. If ai 6= 0, ai′ 6= 0, and aj 6= 0 for some 1 ≤ i ≤ r, 1 ≤ j < n,
with j /∈ {i, i′}, then ma = 0.

Proof. First suppose ai ≥ 2 and ai′ 6= 0 for some 1 ≤ i ≤ r. If ai = p− 1, then ma = 0 by
3.7. And if ai 6= p − 1, then 3.4(1) with b = a − εi′ + εi and l = 2 shows, in light of 3.8,
that ma = 0.

Now assume the hypotheses of this lemma. By 3.7 we may assume ai 6= p − 1. First
assume j > r. Replacing j by j′ in 3.4(2) and then putting b = a + εi − εj we find that
the third term becomes ajma, and the other terms are zero by the first observation of this
proof. Therefore, ma = 0. Now assume j ≤ r. If i < j, replace j by j′ in 3.4(3) and then
put b = a + εi − εj to get ma = 0 (again using the first observation of this proof). So
now suppose j < i. By 3.7, we may assume aj′ 6= p− 1. In 3.4(4), replace i by j′, replace
j by i, and put b = a − εj − εi′ + εj′ . Then the fourth term becomes −ajai′ma and the
other terms are zero. Indeed, mb+εj = ma−εi′+εj′ = 0 by the case i < j just established,
mb+εi′ = ma−εj+εj′ = 0 by the case j > r established above, and the other two terms are
zero by the first observation of this proof. Thus, ma = 0 and the proof is complete. ¤

3.10 Lemma. Let a ∈ A. If ai = 2 for some 1 ≤ i ≤ r and a 6= 2εi, then ma = 0.

Proof. Assume ai = 2 for some 1 ≤ i ≤ r. Suppose aj 6= 0 for some 1 ≤ j < n with j 6= i.
If j = i′, then ma = 0 by the first part of the proof of 3.9. Now assume j /∈ {i, i′}. By 3.7
we may assume ai′ 6= p− 1. Replace i and j in 3.4(4) by i′ and j′, respectively, and then
put b = a−εi−εj +εi′ . The fourth term becomes σ(j)aiajma and the other terms are zero
(mb+εi = ma−εj+εi′ = 0 by the first observation of this proof, mb+εj = ma−εi+εi′ = 0 by
3.9, the third and fifth terms are zero by 3.8). Therefore, ma = 0. Finally, suppose an 6= 0.
Then putting b = a + εi − εn in 3.4(7), we find that the third term becomes −2anma and
the other terms are zero (using 3.8 for the first and second terms and 3.9 for the others).
Therefore, we have shown that if a 6= 2εi, then ma = 0, as desired. ¤

3.11 Lemma. Let a ∈ A. If ai ≥ 2 for some 1 ≤ i < n, then ma = 0.

Proof. We begin by making some general observations. To simplify notation, we set mk :=
mεk+εk′ (1 ≤ k ≤ r). Putting b = εk + εk′ in 3.4(2 and 3) and using 3.7, 3.8, and 3.9, we



SIMPLE MODULES FOR CARTAN-TYPE ALGEBRAS 21

obtain

(3.11.1) x(εi+εj) ·mk =
(
σ(j′)δik − δjk − δj′k

)
mεi′+εj′

whenever 1 ≤ k ≤ r and (i, j) ∈ I. Next, with j replaced by j′ in 3.4(4) and with b = εi,
we get (using 3.8)

0 = σ(j′)x(εi+εj′ ) ·mi + x(2εi) ·mεi+εj + mεj+εi′

for 1 ≤ i ≤ r, j /∈ {i, i′}, while putting l = 2, b = εi + εj in 3.4(1) we get (using 3.8)

0 = x(2εi) ·mεi+εj + mεj+εi′

for 1 ≤ i ≤ r, j /∈ {i, i′}. Therefore, if (i, j) ∈ I with i 6= j, then

(3.11.2) mεi′+εj′ = σ(j′)x(εi+εj) ·mi = 0,

where the first equality is from (3.11.1) with k = i and the second is from a combination
of the last two formulas. We then conclude from (3.11.1) (and 3.8 for the case i = j to see
that m2εi′ = 0) that

(3.11.3) x(εi+εj) ·mk = 0

whenever 1 ≤ k ≤ r and (i, j) ∈ I. In other words, mk is a maximal vector if it is nonzero.
Next, we derive some formulas that will be used to determine the weight of mk. Let

1 ≤ i ≤ r. For any 1 ≤ j ≤ r, we set λji := λ(εj + εj′)i. First, b = εi in 3.4(5) yields (using
3.8)

0 = −2x(2εi) ·m2εi
+ (λii − 1)mi,

while l = 2, b = 2εi in 3.4(1) yields (using 3.8 again)

(3.11.4) 0 = x(2εi) ·m2εi + mi.

Combining these two equations, we obtain

(3.11.5) λiimi = −mi.

Now let 1 ≤ i, j ≤ r, j 6= i. From 3.4(6) with b = εj we get (using 3.9 to see that the
last term is zero)

0 = mi − x(εi′+εj) ·mεi′+εj + x(εi+εj) ·mεi+εj − λjimj ,
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while from 3.4(2) with b = εi + εj we get (using 3.9 again)

(3.11.6) 0 = x(εi+εj) ·mεi+εj
+ mi + mj ,

so

(3.11.7) 0 = x(εi′+εj) ·mεi′+εj
+ (λji + 1)mj .

But b = εi + εj′ in 3.4(3) with j replaced by j′ yields

(3.11.8) 0 = x(εi+εj′ ) ·mεi+εj′ + mi −mj

whenever i < j. Hence

(3.11.9) λjimj =
{ −mj , 1 ≤ i ≤ j ≤ r,

−mi, 1 ≤ j ≤ i ≤ r,

the first case from (3.11.7), (3.11.2), (3.11.5) and the second case from (3.11.7), (3.11.8),
(3.11.5).

Now assume the hypothesis of this lemma: Assume ak ≥ 2 for some 1 ≤ k < n. By 3.8
and 3.10, we may assume 1 ≤ k ≤ r and a = 2εk. Suppose ma 6= 0. Replacing i by i′ in
3.4(1) and then putting l = 3, b = εi′ , we find (using 3.8) that

(3.11.10) 0 = x(2εi′ ) ·mi −m2εi ,

for 1 ≤ i ≤ r, whence mk 6= 0. By replacing k if necessary we may assume that k is the
greatest index (1 ≤ k ≤ r) for which mk 6= 0 (since, in view of (3.11.4), we will still have
ma 6= 0). By (3.11.9),

(3.11.11) λki =
{ −1, 1 ≤ i ≤ k,

0, k < i ≤ r,

so, in particular, if g = H, then mk has the exceptional weight ωk.
Now suppose g = K. We shall first compute λkn and then use the result to show that

mk has exceptional weight in this case as well.
Let 1 ≤ j < k. By (3.11.9), we have λjkmj = −mk, which implies mj 6= 0. Now

(3.11.11) says λkk = −1, so λjk = λk = λkk = −1 (see definition of λ(a)i before 3.3),
whence mj = mk. We conclude that

(3.11.12) mj =
{

mk, 1 ≤ j ≤ k,

0, k < j ≤ r.
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Next, replacing i by k′ in 3.4(7) and putting b = εk we get (using 3.7)

(3.11.13)

0 = −
∑

1≤j<n
j /∈{k,k′}

x(εk′+εj) ·mεk+εj
− 2x(2εk′ ) ·mk

+ 2 [1− λ(2εk)k′ − λ(2εk)n] m2εk
.

Then, replacing i by k′ in 3.4(4) and putting b = εj we get (using 3.7 and 3.9)

x(εk′+εj) ·mεk+εj
= σ(j)x(2εk′ ) ·mj + m2εk

for 1 ≤ j < n, j /∈ {k, k′}. In view of (3.11.10) and (3.11.12), this equation becomes

x(εk′+εj) ·mεk+εj =
{

(σ(j) + 1)m2εk
, 1 ≤ j < k or r < j < k′,

m2εk
, k < j ≤ r or k′ < j < n.

Now, from the definition before 3.3 and (3.11.11), we get

(3.11.14) λ(2εk)k′ = λk + 2 = λkk + 2 = 1.

Putting these last results in (3.11.13) and using (3.11.10) again produces λ(2εk)nm2εk
=

−rm2εk
. Hence,

(3.11.15) λkn = λn + 2 = λ(2εk)n = −r.

Continuing, b = εi in 3.4(7) gives (using 3.9 and 3.10)

0 =
∑

1≤j<n
j 6=i′

(−1− δij)(1 + δij)x(εi+εj) ·mεi+εj −
∑

1≤j≤r
j 6=i

mj + [λin − λii − 2]mi − 2mεn

for each 1 ≤ i ≤ r. But (3.11.2), (3.11.6), (3.11.8) combine to give

x(εi+εj) ·mεi+εj =
{ −mi − σ(j)mj , if 1 ≤ i, j ≤ r, j 6= i or 1 ≤ i < j′ ≤ r,

0, if r < i, j < n, j 6= i or 1 ≤ j′ < i ≤ r.

Applying this, as well as (3.11.4), to the previous equation and rearranging, we obtain

(3.11.16)
∑

i<j≤r

mj = (2r − i + 1− λii + λin)mi − 2mεn

for 1 ≤ i ≤ r.
Recall that k is the greatest index with 1 ≤ k ≤ r for which mk 6= 0. If k = r, then mk is

a maximal vector (by (3.11.3)) with the exceptional weight ωr by (3.11.11) and (3.11.15).
Now suppose k < r. Putting i = r in (3.11.16) yields mεn = 0 (using maximality of k).
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Then putting i = k in (3.11.16) yields, in view of (3.11.11) and (3.11.15), (r−k+2)mk = 0,
so that r − k + 2 = 0 (in F ). Hence,

λkn = −r = −(r + 1− k)− r − 1

and so mk is a maximal vector with the exceptional weight ωk′ (using (3.11.11) again).
Once again let g ∈ {K, H} be arbitrary. We have shown that M has a maximal vector

with exceptional weight. Checking the assumptions of 1.3 we see that it must be the case
that χ(n−0 ) 6= 0, that is, χ(x(εi+εj)) 6= 0 for some (i, j) ∈ I−. We claim that m2εi′ = 0.

If j = i, then x(εi+εj) ·m2εi′ = x(2εi) ·m2εi′ = 0, the last equality from 3.4(1) with l = 3,
b = 0 (using 3.8). This implies m2εi′ = 0 when j = i.

Now assume j 6= i. Let 1 ≤ s, t < n, t /∈ {s, s′} and replace i and j in 3.4(4) by s and t,
respectively. Putting b = εs′ yields

0 = 2σ(s)x(εs+εt) ·m2εs′ + σ(t)x(2εs) ·mεs′+εt′ ,

while putting b = εt′ yields

0 = σ(s)x(εs+εt) ·mεs′+εt′ + 2σ(t)x(2εs) ·m2εt′

(using 3.10 and 3.8). Since i′ ≤ r, we obtain from the above equations and 3.1(4)

x(εi+εj)x(εi+εj) ·m2εi′ = 2−1σ(j)x(εi+εj)x(2εi) ·mεi′+εj′ = 2−1σ(j)x(2εi)x(εi+εj) ·mεi′+εj′

= x(2εi)x(2εj) ·m2εi′ = x(2εj)x(2εi) ·m2εi′ = 0,

the last equality since x(2εi) ·m2εi′ = 0 (again by 3.4(1)). This implies m2εi′ = 0.
Now (3.11.4) implies mi′ = 0, so that i′ > k by (3.11.12). According to 3.1(4), we have

x(εj+εi) = 〈x(εk+εj), x(εk′+εi)〉 and, since x(εk+εj) ·mk = 0 (by (3.11.3)), it follows that

(3.11.17) x(εi+εj) ·mk = x(εk+εj)x(εk′+εi) ·mk.

By 3.4(4) with i replaced by k′, j replaced by i, and with b = εk′ , we have

x(εk′+εi) ·mk = −x(2εk′ ) ·mεi′+εk′ + mεk+εi′

and by 3.4(5) with i replaced by k′, and with b = εi′ , we have

x(2εk′ ) ·mεi′+εk′ = λ(εk + εi′)k′mεk+εi′ ,

whence

(3.11.18) x(εk′+εi) ·mk = [1− λ(εk + εi′)k′ ]mεk+εi′ .
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Recall that (i, j) ∈ I−, so either 1 ≤ i′ < j ≤ r or r < i ≤ j < n. If 1 ≤ i′ < j ≤ r

(respectively, r < i ≤ j < n), then we can replace i by k in 3.4(2) (respectively, 3.4(3))
and then set b = εk + εi′ to obtain

(3.11.19) x(εk+εj) ·mεk+εi′ = σ(j′)2δij mεi′+εj′ .

If we instead replace i by i′ and set b = 2εi′ we obtain

(3.11.20) mεi′+εj′ = σ(j′)x(εi′+εj) ·m2εi′

provided j 6= i. Now m2εi′ = 0 by the preceding paragraph, so (3.11.20) is valid when
j = i, and also x(εk+εj) · mεk+εi′ = 0 by (3.11.19) and (3.11.20). This, combined with
(3.11.17) and (3.11.18), yields x(εi+εj) · mk = 0, implying mk = 0. But this contradicts
the choice of k (see after (3.11.10)). Therefore, the assumption made before (3.11.10) that
ma 6= 0 must have been false. This completes the proof. ¤

3.12 Lemma. Let a ∈ A. If a /∈ {εi | 1 ≤ i < n} ∪ {0}, then ma = 0.

Proof. Assume a /∈ {εi | 1 ≤ i < n} ∪ {0}. By 3.11, we may assume ai ∈ {0, 1} for all
1 ≤ i < n.

If ai = 1 = aj′ with 1 ≤ i, j ≤ r, then b = a + εi − εj′ in 3.4(2) gives ma = 0 (using
3.11), and if ai = 1 = aj (respectively, ai′ = 1 = aj′) with 1 ≤ i < j ≤ r, then replacing j

by j′ in 3.4(3) and then putting b = a+ εi− εj (respectively, b = a− εi′ + εj′) gives ma = 0
(using 3.11).

Finally, if an 6= 0, then, using what we have just shown, we see that for any chosen
1 ≤ i < n, putting b = a + εi − εn in 3.4(7) yields ma = 0. ¤

3.13. Completion of proof of 1.3 when g ∈ {K, H}.
Proof. First, we will require some formulas. Let 1 ≤ i, j ≤ r and 1 ≤ k < n. From 3.4(1,2,
and 3), respectively, we get

(3.13.1)

x(2εi) ·mεk
= −δikmεi′ ,

x(εi+εj) ·mεk
= −δikmεj′ − δjkmεi′ , if i 6= j,

x(εi+εj′ ) ·mεk
= δikmεj − δj′kmεi′ , if i < j.

From 3.4(6) and 3.4(5), respectively, we get

(3.13.2) λ(εk)imεk
=

{
σ(k)x(εi′+εk′ ) ·mεi′ − σ(k)x(εi+εk′ ) ·mεi , i /∈ {k, k′},
x(2εk′ ) ·mεk′ , i ∈ {k, k′}.

Finally, if g = K, then 3.4(7) gives

(3.13.3) λ(εk)nmεk
= −σ(k)

∑

1≤l<n
l/∈{k,k′}

x(εk′+εl) ·mεl
− 2σ(k)x(2εk′ ) ·mεk′ − σ(k)λ(εk)k′mεk

.
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Now suppose ma 6= 0 for some 0 6= a ∈ A. We shall derive a contradiction. We begin by
showing that M has a maximal vector of exceptional weight. By 3.12, we have a = εk for
some 1 ≤ k < n. First suppose r < k < n. By replacing a if necessary, we may assume k is
the least such integer for which mεk

6= 0. By (3.13.1), mεk
is a maximal vector. Then, by

(3.13.2) and (3.13.3), with the aid of (3.13.1), we see that mεk
has the exceptional weight

ωk. Therefore, we may assume that 1 ≤ k ≤ r and that k is the greatest integer for which
mεk

6= 0. By (3.13.1), (3.13.2), and (3.13.3), mεk
is a maximal vector of exceptional weight

ωk−1.
Checking the hypotheses of 1.3, we see that it must be the case that χ(n−0 ) 6= 0.

Therefore, χ(x(εi+εj)) 6= 0 for some (i, j) ∈ I−, that is, with either 1 ≤ i′ < j ≤ r or
r < i ≤ j < n.

We first show that mεi′ = 0. If j = i, then x(εi+εj) ·mεi′ = x(2εi) ·mεi′ = 0 by 3.4(1)
with l = 3, b = 0, so mεi′ = 0 (arguing as in the proof of 2.5). Hence, we may assume
j 6= i. By 3.4(4) with i replaced by s, j replaced by t, and then b = 0, we have

(3.13.4) σ(s)x(εs+εt) ·mεs′ = −σ(t)x(2εs) ·mεt′

for 0 ≤ s, t < n, t /∈ {s, s′}. Then

x(εi+εj)x(εi+εj) ·mεi′ = σ(j)x(εi+εj)x(2εi) ·mεj′ = σ(j)x(2εi)x(εi+εj) ·mεj′

= x(2εi)x(2εj) ·mεi′ = x(2εj)x(2εi) ·mεi′ = 0,

where we have used (3.13.4) for the first and third equalities, 3.1(4) for the second and
fourth equalities, and 3.4(1) with l = 3, b = 0 again for the last equality. Thus, mεi′ = 0
as desired.

Next, if i′ < l < n, then mεl
= σ(l)x(εi′+εl′ ) · mεi′ = 0 by (3.13.1) (using all three

formulas in order for the cases l = i, l > r with l 6= i, and l ≤ r, respectively). Finally, let
1 ≤ l < i′. We have from 3.1(4)

2δij x(εi+εj) ·mεl
= 〈x(εi+εl), x(εj+εl′ )〉 ·mεl

= x(εi+εl)x(εj+εl′ ) ·mεl
− x(εj+εl′ )x(εi+εl) ·mεl

.

Using (3.13.4), we get x(εj+εl′ ) ·mεl
= σ(j)x(2εl′ ) ·mεj′ = 0, since mεj′ = 0 by the above

argument and the fact that j′ ≥ i′. Also, x(εi+εl) ·mεl
= mεi′ = 0 by (3.13.1). Therefore,

x(εi+εj) ·mεl
= 0, implying mεl

= 0.
We have shown that mεl

= 0 for all 1 ≤ l < n. This contradicts our assumption that
mεk

= ma 6= 0. It follows that ma = 0 if a ∈ A and a 6= 0, and we conclude that v = 1⊗m0.
By 3.3, m0 is a weight vector of weight λ(0) = λ. Since v is a maximal vector, v 6= 0, so

m0 6= 0 as well. Finally 3.4(2 and 3) with b = 0 give x(εi+εj) ·m0 = 0 for (i, j) ∈ I. Thus
m0 is a maximal vector of weight λ. ¤
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4. Automorphisms and Conclusion.

In order to obtain our main results, we will find it convenient at times to assume that
the character χ ∈ g∗ is in a certain normal form, for instance, satisfying χ(n) = 0. It turns
out that, for our purposes, we may replace χ with a conjugate in normal form, where the
conjugation is with respect to the action of the automorphism group of g on g∗. (This is a
technique employed by Friedlander and Parshall in their work on modular representations
of the classical Lie algebras in [FP].) We begin this section by proving those conjugation
results that will be required.

Let the notation be as in Section 1. We denote by Aut g the group of automorphisms
of the Lie algebra g. Note that since g is simple and hence centerless, each Φ ∈ Aut g is
automatically restricted, meaning Φ(D[p]) = Φ(D)[p] for each D ∈ g. The group Aut g acts
on the set g∗ according to the rule

χΦ(D) = χ(Φ(D))

(χ ∈ g∗, Φ ∈ Aut g, D ∈ g). If χ ∈ g∗ and Φ ∈ Aut g, then, by the universal mapping
property of reduced enveloping algebras, we easily get u(g, χΦ) ∼= u(g, χ), so the theory of
g-modules having character χΦ is the same as that of g-modules having character χ. It
follows, for instance, that the number of isomorphism classes of simple g-modules having
character χ ∈ g∗ depends only on the conjugacy class of χ. However, we will see that in
making other statements about the representation theory it is not so obvious that we can
replace χ with a conjugate (see the application of 4.2 in the proof of 4.3, for instance).

We will require a rather detailed understanding of the structure of Aut g. Fortunately,
Wilson has provided such in [W]. The first result needed is that Aut g ∼= Aut∗ gnAut1 g,
where Aut∗ g = {Φ ∈ Aut g |Φ is homogeneous} and Aut1 g = {Φ ∈ g | (Φ − 1g)(gi) ⊆∑

j>i gj for each i} (see [W, Theorem 2(a), p. 598]). Other of Wilson’s findings will be
called upon as required in the proofs below.

4.1 Theorem. Let χ ∈ g∗.

(1) If Φ ∈ Aut g, then ht χΦ = htχ.
(2) If ht χ ≤ 1, then there exists Φ ∈ Aut∗ g such that χΦ(n) = 0.
(3) If htχ = 1, then there exists Φ ∈ Aut g such that χΦ(g−) = 0, where g− =

∑
i<0 gi.

Proof. (1) Since Aut g = Aut∗ g n Aut1 g, it is enough to check the two cases Φ ∈ Aut∗ g

and Φ ∈ Aut1 g, each of which is clear.
(2) If g ∈ {W,S}, put C = SLn(F ), c = sln(F ), while if g ∈ {K, H}, put C = Sp2r(F ),

c = sp2r(F ). Then c = Lie C, and with the identification g0 ↪→ gln(F ) described at the
beginning of Section 2 (respectively, Section 3), we have n0 ⊆ c ⊆ g0. Let ψ = χ|c.
According to [KW, Theorem 4(iv), p. 140], there exists g ∈ C satisfying (g · ψ)(n0) = 0
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where (g · ψ)(x) = ψ(Ad(g−1)(x)). And by [W, Theorem 2(c and d), p. 598], there
exists Φ ∈ Aut∗ g satisfying Φ(x) = g−1xg for each x ∈ c. Then, χΦ(n0) = χ(Φ(n0)) =
χ(g−1n0g) = ψ(Ad(g−1)(n0)) = (g · ψ)(n0) = 0. Finally, (1) says htχΦ = htχ ≤ 1, so
χΦ(g1) = 0. Thus, χΦ(n) = 0.

(3) First assume g ∈ {W,S}. We obtain a new grading on W by defining the kth
homogeneous component to be W[k] =

∑
Fx(a)Dj , where the sum is over all a ∈ A,

1 ≤ j ≤ n for which
∑

i iai−j = k. Then, with the induced grading given by g[k] = g∩W[k],
g is a graded algebra and g0 is a graded subalgebra.

Assume ht χ = 1. Then χ(g0) 6= 0, so there is a minimal t for which χ(g0 ∩ g[t]) 6= 0.
We have χ(D) 6= 0 for some D ∈ g[t] with either D = hn or D = Dij(x) with x = xaxb for
some 1 ≤ i, j, a, b ≤ n.

If χ(g−1) = 0 there is nothing to show, so assume otherwise and let 1 ≤ l ≤ n be
maximal for which χ(Dl) 6= 0. Put

E =
{

xlhn, if D = hn

Dij(xlx), if D = Dij(x).

Then E ∈ g1 ∩ g[t+l].
Let c ∈ F . According to [W, Theorem 1], there exists Φ ∈ Aut g such that Φ(Dk) −

[cE,Dk]−Dk ∈ g1 for each k. Since htχ = 1, we have χ(g1) = 0. Therefore,

(4.1.1) χΦ(Dk) = χ(Φ(Dk)) = cχ([E,Dk]) + χ(Dk)

for each k.
Now [E,Dk] ∈ g0 ∩ g[t+l−k] so if k > l, then χ([E,Dk]) = 0 (using minimality of t),

which implies χΦ(Dk) = χ(Dk) = 0. Also, if D = hn, then

[E, Dl] = [xlhn, Dl] = [xlxnDn, Dl] = −2δlnD,

while if D = Dij(x), then

[E, Dl] = −Dij(Dl(xlx)) = −Dij(x)−Dij(xl(Dlx)) = −(1 + δla + δlb)D

(the first equality from [SF, Lemma 3.2(4), p. 155]). In either case, the coefficient of
D is nonzero. Since χ(D) 6= 0 as well, we have χ([E,Dl]) 6= 0. Therefore, we can let
c = −χ([E, Dl])−1χ(Dl) in (4.1.1) to get χΦ(Dl) = 0.

We have shown that χΦ(Dk) = 0 for all l ≤ k ≤ n. Therefore, arguing by reverse
induction on l we get the desired result.

Now assume g ∈ {K, H}. We obtain a new grading on g by defining the kth ho-
mogeneous component to be g[k] =

∑
Fx(a), where the sum is over all a ∈ Â for which∑r

i=1 i(ai−ai′) = k (see discussion after 3.1 for notation). Then g0 is a graded subalgebra.
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Assume htχ = 1 and let t be maximal with respect to the property χ(g0 ∩ g[t]) 6= 0.
Then χ(D) 6= 0 for some D ∈ g[t] of the form D = x(a) with ‖a‖ = 0. Furthermore, we may
assume that if a = εn, then χ(hi) = 0 for all 1 ≤ i < n, since x(εn) = hn and g0 ∩ g[0] = h.

For −r ≤ k ≤ r, put

k̃ =
{

k, if 0 ≤ k ≤ r,

(−k)′, if −r ≤ k < 0,

and define yk := xk̃. Note that yk ∈ g[k] and g− = g−2 + g−1 =
∑r

k=−r Fyk. Suppose
χ(g−) 6= 0. Then χ(yl) 6= 0 for some maximal −r ≤ l ≤ r. Put E = x(a+εl̃′ ). Then
E ∈ g1+δl0 ∩ g[t−l].

Let c ∈ F . As above, there exists Φ ∈ Aut g such that

(4.1.2) χΦ(yk) = cχ(〈E, yk〉) + χ(yk)

for each k.
The graded structure gives 〈E, yk〉 ∈ gδl0−δk0 ∩ g[t−l+k]. Explicitly we have from 3.1(1)

(4.1.3)
〈E, yk〉 = 〈x(a+εl̃′ ), xk̃〉 = −σ(k̃)x(a+εl̃′−εk̃′ ) − [

(1− δ0k)(ak̃ + δk̃l̃′) + 1
]
x(a+εl̃′+εk̃−εn).

Fix k with l < k ≤ r. We claim that χ(〈E, yk〉) = 0. If l = 0, then this is clear since
χ(g1) = 0 by the assumption htχ = 1. If k = 0, then 〈E, yk〉 = −2x(a+εl̃′−εn), which
equals zero if a 6= εn and equals −2y−l otherwise, so we can use the definition of l since
−l > −k = 0 > l. Finally, if l 6= 0, k 6= 0, then maximality of t gives the claim.

Next, (4.1.3) gives

〈E, yl〉 = −σ(l̃)D − [
(1− δ0l)al̃ + 1

]
x(a+εl̃′+εl̃−εn).

If l = 0, then the right-hand side is −2D. If l 6= 0 and the second term on the right is
nonzero, then a = εn, in which case this term is −hl̃. In view of our assumptions on D, we
conclude that χ(〈E, yl〉) is a nonzero multiple of χ(D) and is hence nonzero. Therefore,
we can let c = −χ(〈E, yl〉)−1χ(yl) and complete the proof as before. ¤

Let L be a restricted Lie algebra. Let Φ ∈ Aut(L) and let M be an L-module. Denote
by MΦ the L-module having M as its underlying vector space and L-action given by
x ·m = Φ(x)m (x ∈ L, m ∈ M), where the action on the right is the given one. Clearly,
MΦ is simple if and only if M is. Also, it is easy to check that if M has character χ, then
MΦ has character χΦ.

From the description before 4.1 of Aut g, we see that any Φ ∈ Aut g restricts to an
automorphism of g0 (respectively, g1), which we continue to denote by Φ.
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4.2 Proposition. Let χ ∈ g∗ and let Φ ∈ Aut g.

(1) If M is a u(g0, χ)-module, then [Zχ(M)]Φ ∼= ZχΦ
(MΦ).

(2) If ht χ ≤ 0 and S is a simple u(g0, χ)-module, then [Zχ(S)]Φ ∼= ZχΦ
(S).

Proof. (1) Let M be a u(g0, χ)-module. As noted above, [Zχ(M)]Φ is a u(g, χΦ)-module.
Its subspace 1 ⊗M is a u(g0, χΦ)-submodule isomorphic to MΦ. Moreover, a u(g0, χΦ)-
isomorphism MΦ → 1⊗M induces a u(g, χΦ)-homomorphism f : ZχΦ

(MΦ) → [Zχ(M)]Φ,
which is necessarily surjective since 1 ⊗ M generates [Zχ(M)]Φ. Finally, both modules
have dimension pk dimF M , where k =

∑
i<0 dimF gi, so f is an isomorphism.

(2) Assume htχ ≤ 0 and let S be a simple module for u(g0, χ) = u(g0). By (1),
it is enough to show that SΦ ∼= S as g0-modules. Because g1 acts trivially on S, we
may assume that Φ ∈ Aut∗ g. In particular, we need only show that SΦ ∼= S as g0-
modules. As in Wilson’s paper [W], we view g as a subalgebra of W (n,1) = DerF A(n,1)
for an appropriate n. Set A = A(n,1) and let Aut∗ A denote the group of homogeneous
automorphisms of A (relative to Wilson’s grading, which differs from ours when g = K).
By [W, Theorem 2(b), p. 598], there exists ϕ ∈ Aut∗ A satisfying Φ(x) = ϕxϕ−1 for all
x ∈ g. If ϕ1 := ϕ|A1 = c(idA1) for some c ∈ F×, then Φ(x) = x for each x ∈ g0, implying
SΦ = S. Therefore, by [W, Theorem 2(c and d), p. 598] we may assume ϕ1 ∈ G, where G

is GL(A1), SL(A1), Sp(A′1)× F× (A′1 := 〈xi | 1 ≤ i < n〉), or Sp(A1) according as g is W ,
S, K, or H.

We view G as an F -group (scheme). It is reductive and Lie G = g0. Denote by G1 the
Frobenius kernel of G and let F : G1-mod → u(g0)-mod and G : u(g0)-mod → G1-mod
denote the functors defining the equivalence of the indicated categories as described in
[J, 8.6(2), using 8.5(b), p. 133]. Let M be a G1-module, let α ∈ AutG1, and let Mα

denote the G1-module with G1-action given by g ·m = α(g)m for any (commutative) F -
algebra B, g ∈ G1(B), m ∈ M ⊗ B, where the action on the right is the given one. Then
F(Mα) ∼= [F(M)]dα, where dα is the differential of α. Indeed, any x ∈ u(g0) (identified
with the algebra M(G1) of measures on G1) acts on F(Mα) as

(idMα⊗̄x) ◦ 4Mα = (idM ⊗̄x) ◦ (idM ⊗ α∗) ◦ 4M

= [idM ⊗̄(α∗)t(x)] ◦ 4M

= (idM ⊗̄dα(x)) ◦ 4M ,

which is how x acts on F(M)dα. This applies in particular to the choice α = Inn ϕ1 ∈
Aut G1. Now, according to [J, 3.11, p. 220], if M is simple, then Mα ∼= M . Therefore,

SΦ = SAd ϕ1 = Sdα ∼= F(G(S)α) ∼= F(G(S)) ∼= S,

where, for the first equality we have used that (Ad ϕ1)(x) = ϕ1xϕ−1
1 for any x ∈ g0 (which

is [J, 7.18(1), p. 126] applied to M = A1). ¤
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For λ ∈ Λ, let L0(λ) be a simple u(g0)-module having maximal vector of weight λ. Then
{L0(λ) |λ ∈ Λ} is a complete set of pairwise nonisomorphic u(g0)-modules.

4.3 Theorem. Let χ ∈ g∗ with htχ ≤ 1, and let S be a simple u(g0, χ)-module. If S

is not g0-isomorphic to any L0(λ) with λ ∈ Λe, then Zχ(S) is simple. In particular, if
htχ = 1, then Zχ(S) is simple.

Proof. If htχ = 1, then χ(g0) 6= 0, implying S is not restricted and hence not g0-isomorphic
to any L0(λ) with λ ∈ Λe. Therefore, it suffices to prove the first statement. In view of
4.2(1 and 2), we may replace χ with any convenient conjugate χΦ, Φ ∈ Aut g. Then by
4.1(2) we may assume χ(n) = 0.

Assume S is not g0-isomorphic to any L0(µ) with µ ∈ Λe. Let v ∈ Zχ(S) be a maximal
vector of weight, say, λ. By 1.1, it is enough to show that v generates Zχ(S).

First assume χ(n−0 ) 6= 0. By 1.3, we have v = 1 ⊗ m0 with 0 6= m0 ∈ S. Since m0

generates S, it follows that v generates Zχ(S).
For the remainder of the proof, assume χ(n−0 ) = 0. Suppose htχ ≤ 0. Then S is

restricted and hence, by assumption, does not contain a maximal vector of exceptional
weight. Therefore, v = 1⊗m0 with 0 6= m0 ∈ S (by 1.3), and v generates Zχ(S) as before.

Finally, suppose htχ = 1. Then χ(hi) 6= 0 for some i. As pointed out before 1.1,
λ ∈ Λχ, so λi is a solution of λp

i − λi = χ(hi)p. In particular, λi /∈ Fp. This shows that
λ is not exceptional. Once again, 1.3 says v = 1 ⊗m0 with 0 6= m0 ∈ S and the proof is
complete. ¤

The final result says essentially that the simple induced modules in the last theorem are
pairwise nonisomorphic.

4.4 Theorem. Let χ ∈ g∗.

(1) Assume htχ ≤ 0. If λ, µ ∈ Λ\Λe and λ 6= µ, then Zχ(L0(λ)) 6∼= Zχ(L0(µ)).
(2) Assume htχ = 1. If S and S′ are simple u(g0, χ)-modules and S 6∼= S′, then

Zχ(S) 6∼= Zχ(S′).

Proof. (1) Let λ, µ ∈ Λ\Λe with λ 6= µ. The g0-module L0(λ) has a unique maximal vector
m0 up to scalar multiple and its weight is λ. Clearly 1 ⊗m0 ∈ Zχ(L0(λ)) is a maximal
vector of weight λ. Now L0(λ) has no maximal vector of exceptional weight, so 1.3 applies
to show that every maximal vector of Zχ(L0(λ)) is a multiple of 1 ⊗ m0 and hence has
weight λ. Similarly, Zχ(L0(µ)) has a maximal vector of uniquely determined weight µ, so
the claim follows.

(2) By 4.2(1), we may replace χ with any conjugate χΦ, Φ ∈ Aut g. Then by 4.1(3),
we may assume χ(g−) = 0. Then u(g, χ) is a graded algebra with grading induced by
the grading on g and, as such, satisfies the assumptions on the algebra A in [HN] (the
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argument in Example 3 of Section 2 there carries over to u(g, χ)). Then 3.2 of that paper
establishes the claim. ¤
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